Real-time synthetic tracking for NEA discovery

Mălin Stănescu, Marcel M. Popescu, Ovidiu Văduvescu, Lucian Curelaru, Daniel Nicolae Berteșteanu, Marian Predatu

Planetary Defense Conference 2023

Methods and results

Conclusion and outro

Who we are?

ParaSOL project (UEFISCDI funding) under EURONEAR

- Research network in NEA discovery
- Collaborators in many european countries (and Chile)
- Umbrella: Stănescu and Văduvescu 2021 [1]

- ParaSOL: UEFISCDI-funded project to complete the suite
- Reference blink pipeline
- STU (Synthetic Tracking on Umbrella)
- ► IPP (Image Processing Pipeline)
- ► Webrella

Synthetic Tracking with STU

- Modern computers feature increasing compute power
- Gains particularly in "accelerator" hardware: GPUs
- Synthetic Tracking [2][3][4][5]: improve SNR by stacking across all possible motion vectors
- Portable: .NET Framework (Linux, Windows maybe others) + OpenCL

Runtime

- Real-time synthetic tracking
- Example: Wide Field Camera on Isaac Newton Telescope
- 4 CCDs of 9 Mpx each, $0.33'' \text{ px}^{-1}$
- Readout 30 s, exposure 30 s, total 1 min cadence
- ► Search cone of 10 " min⁻¹, stack of 12 images.
- ▶ Runtime: 26 s per CCD, with 2 s for actual ST scan
- ► ST (2 min) ≪ acquisition time (12 min)

Validation

- ► Tested on telescopes: TCS, INT, T025; over 100000 images in total
- Detected all objects in the TCS dataset that have no pre-processing issues
- ▶ Bulk detection rate on INT WFC of 50%
- ► Validated real-time processing on 3 nights of INT observations

The good

- Real-time synthetic tracking for the masses
- All objects detected when input images are free of defects
- Validated against a large dataset
- End-to-end pipeline available
- Theoretical model for tuning the detection threshold

The dangerous

Methods and results

Object Designation	Year Range	Potential Impacts	Impact Probability (cumulative)	 V_{infinity} (km/s) 	0 H (mag)	Estima Diama (km	ited Palermo iter (Scale) (cum.)	Palermo Scale (max.)	torino
	2026-2121	123		7.35	23.9	0.0	156 -1.16	-1.17	1
101955 Bennu (1999 RQ36)	2178-2290	157	5.7e-4	5.99	20.6	0.4	190 -1.41	-1.59	
29075 (1950 DA)	2880-2880	1	2.96-5	14.10	17.9	1.3	-2.05	-2.05	

Figure: **2023 DW**, follow-up on 1st of March. Detection as reported by STU, from the observation archive. Detection stamp from trimmed mean of 4 images with stars masked, width 300px. Figure: **2023 DZ2**, detected on 27th of February. Detection as reported by STU, with reporting stage re-ran for press release. Detection stamp from mean of 4 input images, width 500px. $\underset{OOO}{\text{Methods and results}}$

Next steps

Current activities

- Improving reporting and validation
- Decreasing image pre-processing (IPP) runtime
- Continue validation efforts on corner cases

Planned activities

- Acquiring and validating on space debris dataset
- Improving handling of many-chip cameras
- Moving other expensive operations to GPU and eliminating processing bottlenecks

Intro 0 Methods and results

Conclusion and outro $000 \bullet$

Question time

M. Stănescu, et al. (2021) Astronomy and Computing 35:100453 doi. arXiv:2008.04724.

- B. Gladman, et al. (1997) Astronomy and Astrophysics 317:L35 doi. arXiv:astro-ph/9610150.
- T. Yanagisawa, et al. (2005) Publications of the Astronomical Society of Japan 57(2):399 ISSN 0004-6264 doi.

arXiv:https: //academic.oup.com/pasj/article-pdf/57/2/399/17265372/pasj57-0399.pdf.

- C. Zhai, et al. (2018) Technical note: Asteroid detection demonstration from skysat-3 b612 data using synthetic tracking.
 arXiv:1805.01102.
- 📕 M. Shao, et al. (2014) The Astrophysical Journal 782(1):1 ISSN 1538-4357 doi.